RMM's Solution Concept and the Equilibrium Point Solution

نویسنده

  • Edmund H. Durfee
چکیده

Research in distributed AI has dealt with the interactions of agents, both cooperative and self-interested. The Recursive Modeling Method (RMM) is one method used for modeling rational self-interested agents. It assumes that knowledge is nested to a finite depth. An expansion of RMM, using a sigmoid function, was proposed with the hope that the solution concept of the new RMM would approximate the Nash EP in cases where RMMs knowledge approximated the common knowledge that is assumed by game theory. In this paper, we present a mathematical analysis of RMM with the sigmoid function and prove that it indeed tries to converge to the Nash EP. However, we also show how and why it fails to do so for most cases. Using this analysis, we argue for abandoning the sigmoid function as an implicit representation of uncertainty about the depth of knowledge, in favor of an explicit representation of the uncertainty. We also suggest other avenues of research that might give us other more efficient solution concepts which would also take into consideration the cost of computation and the expected gains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Vector Equilibrium Problem with Generalized Pseudomonotonicity

In this paper, first a short history of the notion of equilibrium problem in Economics and Nash$acute{'}$ game theory is stated. Also the relationship between equilibrium problem among important mathematical problems like optimization problem, nonlinear programming, variational inequality problem, fixed point problem and complementarity problem is given. The concept of generalized pseudomonoton...

متن کامل

Hölder continuity of solution maps to a parametric weak vector equilibrium problem

In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.

متن کامل

Lower semicontinuity for parametric set-valued vector equilibrium-like problems

A concept of weak $f$-property for a set-valued mapping is introduced‎, ‎and then under some suitable assumptions‎, ‎which do not involve any information‎ ‎about the solution set‎, ‎the lower semicontinuity of the solution mapping to‎ ‎the parametric‎ ‎set-valued vector equilibrium-like problems are derived by using a density result and scalarization method‎, ‎where the‎ ‎constraint set $K$...

متن کامل

BIFURCATION OF PERIODIC SOLUTION FROM AN EQUILIBRIUM POINT IN THE MULTIPARAMETER CASE

We consider the bifurcation of periodic solutions from an equilibrium point of the given equation: x =F(x,?) , where x ? R , ? is a vector of real parameters ? , ? , ... , ? and F:R x R ->R has at least second continuous derivations in variables

متن کامل

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994